Source code for pyinform.conditionalentropy

# Copyright 2016-2019 Douglas G. Moore. All rights reserved.
# Use of this source code is governed by a MIT
# license that can be found in the LICENSE file.
"""
`Conditional entropy`_ is a measure of the amount of information
required to describe a random variable :math:`Y` given knowledge of another
random variable :math:`X`. When applied to time series, two time series are used
to construct the empirical distributions and then
:py:func:`~.shannon.conditional_entropy` can be applied to yield

.. math::

    H(Y|X) = -\\sum_{x_i, y_i} p(x_i, y_i) \\log_2 \\frac{p(x_i, y_i)}{p(x_i)}.

This can be viewed as the time-average of the local conditional entropy

.. math::

    h_{i}(Y|X) = -\\log_2 \\frac{p(x_i, y_i)}{p(x_i)}.


See [Cover1991]_ for more information.

.. _Conditional entropy: https://en.wikipedia.org/wiki/Conditional_entropy

Examples
--------

.. doctest:: conditional_entropy

    >>> xs = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]
    >>> ys = [0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1]
    >>> conditional_entropy(xs,ys)      # H(Y|X)
    0.5971071794515037
    >>> conditional_entropy(ys,xs)      # H(X|Y)
    0.5077571498797332
    >>> conditional_entropy(xs, ys, local=True)
    array([3.        , 3.        , 0.19264508, 0.19264508, 0.19264508,
           0.19264508, 0.19264508, 0.19264508, 0.19264508, 0.19264508,
           0.19264508, 0.19264508, 0.19264508, 0.19264508, 0.19264508,
           0.19264508, 0.4150375 , 0.4150375 , 0.4150375 , 2.        ])
    >>> conditional_entropy(ys, xs, local=True)
    array([1.32192809, 1.32192809, 0.09953567, 0.09953567, 0.09953567,
           0.09953567, 0.09953567, 0.09953567, 0.09953567, 0.09953567,
           0.09953567, 0.09953567, 0.09953567, 0.09953567, 0.09953567,
           0.09953567, 0.73696559, 0.73696559, 0.73696559, 3.9068906 ])
"""
import numpy as np

from ctypes import byref, c_int, c_ulong, c_double, POINTER
from pyinform import _inform
from pyinform.error import ErrorCode, error_guard


[docs]def conditional_entropy(xs, ys, local=False): """ Compute the (local) conditional entropy between two time series. This function expects the **condition** to be the first argument. :param xs: the time series drawn from the conditional distribution :type xs: a sequence or ``numpy.ndarray`` :param ys: the time series drawn from the target distribution :type ys: a sequence or ``numpy.ndarray`` :param bool local: compute the local conditional entropy :return: the local or average conditional entropy :rtype: float or ``numpy.ndarray`` :raises ValueError: if the time series have different shapes :raises InformError: if an error occurs within the ``inform`` C call """ us = np.ascontiguousarray(xs, dtype=np.int32) vs = np.ascontiguousarray(ys, dtype=np.int32) if us.shape != vs.shape: raise ValueError("timeseries lengths do not match") bx = max(2, np.amax(us) + 1) by = max(2, np.amax(vs) + 1) xdata = us.ctypes.data_as(POINTER(c_int)) ydata = vs.ctypes.data_as(POINTER(c_int)) n = us.size e = ErrorCode(0) if local is True: ce = np.empty(us.shape, dtype=np.float64) out = ce.ctypes.data_as(POINTER(c_double)) _local_conditional_entropy(xdata, ydata, c_ulong(n), c_int(bx), c_int(by), out, byref(e)) else: ce = _conditional_entropy(xdata, ydata, c_ulong(n), c_int(bx), c_int(by), byref(e)) error_guard(e) return ce
_conditional_entropy = _inform.inform_conditional_entropy _conditional_entropy.argtypes = [POINTER(c_int), POINTER(c_int), c_ulong, c_int, c_int, POINTER(c_int)] _conditional_entropy.restype = c_double _local_conditional_entropy = _inform.inform_local_conditional_entropy _local_conditional_entropy.argtypes = [POINTER(c_int), POINTER(c_int), c_ulong, c_int, c_int, POINTER(c_double), POINTER(c_int)] _local_conditional_entropy.restype = c_double